Food Carbohydrate Chemistry
The IFT Press series reflects the mission of the Institute of Food Technologists—to advance the science of food contributing to healthier people everywhere. Developed in partnership with Wiley-Blackwell, IFT Press books serve as leading-edge handbooks for industrial application and reference and as essential texts for academic programs. Crafted through rigorous peer review and meticulous research, IFT Press publications represent the latest, most significant resources available to food scientists and related agriculture professionals worldwide. Founded in 1939, the Institute of Food Technologists is a nonprofit scientific society with 22,000 individual members working in food science, food technology, and related professions in industry, academia, and government. IFT serves as a conduit for multidisciplinary science thought leadership, championing the use of sound science across the food value chain through knowledge sharing, education, and advocacy.

IFT Press Advisory Group
Casimir C. Akoh
Christopher J. Doona
Florence Feeherry
Jung Hoon Han
David McDade
Ruth M. Patrick
Syed S.H. Rizvi
Fereidoon Shahidi
Christopher H. Sommers
Yael Vodovotz
Karen Nachay

IFT Press Editorial Board
Malcolm C. Bourne
Dietrich Knorr
Theodore P. Labuza
Thomas J. Montville
S. Suzanne Nielsen
Martin R. Okos
Michael W. Pariza
Barbara J. Petersen
David S. Reid
Sam Saguy
Herbert Stone
Kenneth R. Swartzel

WILEY-BLACKWELL
A John Wiley & Sons, Ltd., Publication
Food Carbohydrate Chemistry

Ronald E. Wrolstad
Distinguished Professor of Food Science Emeritus
Oregon State University
Titles in the IFT Press series

- Accelerating New Food Product Design and Development (Jacqueline H. Beckley, Elizabeth J. Topp, M. Michele Foley, J.C. Huang, and Witoon Prinyawiwatkul)
- Advances in Dairy Ingredients (Geoffrey W. Smithers and Mary Ann Augustin)
- Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals (Yoshinori Mine, Eunice Li-Chan, and Bo Jiang)
- Biofilms in the Food Environment (Hans P. Blaschek, Hua H. Wang, and Meredith E. Agle)
- Calorimetry in Food Processing: Analysis and Design of Food Systems (Gönül Kaletunc)
- Coffee: Emerging Health Effects and Disease Prevention (YiFang Chu)
- Food Carbohydrate Chemistry (Ronald E. Wrolstad)
- Food Ingredients for the Global Market (Yao–Wen Huang and Claire L. Kruger)
- Food Irradiation Research and Technology (Christopher H. Sommers and Xuetong Fan)
- Foodborne Pathogens in the Food Processing Environment: Sources, Detection and Control (Sadhana Ravishankar, Vijay K. Juneja, and Divya Jaroni)
- High Pressure Processing of Foods (Christopher J. Doona and Florence E. Feeherry)
- Hydrocolloids in Food Processing (Thomas R. Laaman)
- Improving Import Food Safety (Wayne C. Ellefson, Lorna Zach, and Darryl Sullivan)
- Innovative Food Processing Technologies: Advances in Multiphysics Simulation (Kai Knoerzer, Pablo Juliano, Peter Roupas, and Cornelis Versteeg)
- Microbial Safety of Fresh Produce (Xuutong Fan, Brendan A. Niemira, Christopher J. Doona, Florence E. Feeherry, and Robert B. Gravani)
- Microbiology and Technology of Fermented Foods (Robert W. Hultkins)
- Multiphysics Simulation of Emerging Food Processing Technologies (Kai Knoerzer, Pablo Juliano, Peter Roupas and Cornelis Versteeg)
- Multivariate and Probabilistic Analyses of Sensory Science Problems (Jean–François Meullenet, Rui Xiong, and Christopher J. Findlay)
- Nanoscience and Nanotechnology in Food Systems (Hongda Chen)
- Natural Food Flavors and Colorants (Mathew Attokaran)
- Nondestructive Testing of Food Quality (Joseph Irudayaraj and Christoph Reh)
- Nondigestible Carbohydrates and Digestive Health (Teresa M. Paeschke and William R. Aimutis)
- Nonthermal Processing Technologies for Food (Howard Q. Zhang, Gustavo V. Barbosa–Cánovas, V.M. Balasubramaniam, C. Patrick Dunne, Daniel F. Parkas, and James T.C. Yuan)
- Nutraceuticals, Glycemic Health and Type 2 Diabetes (Vijai K. Pasupuleti and James W. Anderson)
- Organic Meat Production and Processing (Steven C. Ricke, Michael G. Johnson, and Corliss A. O’Bryan)
- Packaging for Nonthermal Processing of Food (Jung H. Han)
- Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Ross C. Beier, Suresh D. Pillai, and Timothy D. Phillips, Editors; Richard L. Ziprin, Associate Editor)
- Processing and Nutrition of Fats and Oils (Ernesto M. Hernandez and Afaf Kamal–Eldin)
- Processing Organic Foods for the Global Market (Gwendolyn V. Wyard, Anne Plotto, Jessica Walden, and Kathryn Schuett)
- Regulation of Functional Foods and Nutraceuticals: A Global Perspective (Clare M. Hasler)
- Resistant Starch: Sources, Applications and Health Benefits (Yong–Cheng Shi and Clodualdo Maningat)
• Sensory and Consumer Research in Food Product Design and Development (Howard R. Moskowitz, Jacqueline H. Beckley, and Anna V.A. Resurreccion)
• Sustainability in the Food Industry (Cheryl J. Baldwin)
• Thermal Processing of Foods: Control and Automation (K.P. Sandeep)
• Trait–Modified Oils in Foods (Frank T. Orthoefer and Gary R. List)
• Water Activity in Foods: Fundamentals and Applications (Gustavo V. Barbosa–Cánovas, Anthony J. Fontana Jr., Shelly J. Schmidt, and Theodore P. Labuza)
• Whey Processing, Functionality and Health Benefits (Charles I. Onwulata and Peter J. Huth)
Dedication

This book is dedicated to two special mentors, one being my Major Professor at the University of California, Davis, Dr. Walter G. Jennings. His concern for students and his enthusiasm for research and teaching continue to inspire. The second is the late Robert S. Shallenberger with whom I was fortunate to work while on sabbatical leave at Cornell University in 1979–1980. His influence on this book should be evident on nearly every page. I would also like to dedicate the book to the many undergraduate and graduate students, who through their suggestions, understanding, and misunderstanding helped me to revise, discard, and improve lecture presentations, homework assignments, demonstrations, and laboratory exercises. All of those items were a platform for this book.

Contents

Contributors xv
Acknowledgments xvii
Introduction xix

1 Classifying, Identifying, Naming, and Drawing Sugars and Sugar Derivatives 1
 Structure and Nomenclature of Monosaccharides 2
 Aldoses and Ketoses 2
 Configurations of Aldose Sugars 3
 D- vs. L-Sugars 3
 Different Ways of Depicting Sugar Structures 5
 Fischer, Haworth, Mills, and Conformational Structures 5
 Classifying Sugars by Compound Class—Hemiacetals, Hemiketals, Acetals, and Ketals 7
 Structure and Nomenclature of Disaccharides 8
 Structure and Optical Activity 10
 A Systematic Procedure for Determining Conformation (C-1 or 1-C), Chiral Family (D or L), and Anomeric Form (α or β) of Sugar Pyranoid Ring Structures 13
 Structure and Nomenclature of Sugar Derivatives with Relevance to Food Chemistry 14
 Glycols (Alditols) 14
 Glyconic, Glycuronic, and Glycaric Acids 15
 Deoxy Sugars 17
 Amino Sugars and Glycosyl Amines 17
 Glycosides 18
 Sugar Ethers and Sugar Esters 19
 Vocabulary 20
 References 21

2 Sugar Composition of Foods 23
 Introduction 23
 Sugar Content of Foods 24
 Composition of Sweeteners 24
 Cane and Beet Sugar 24
Contents

Starch Granules 112
Gelatinization and Pasting: The Cooking of Starch 113
Retrogradation and Gelation: The Cooling of Cooked Starch 115
Monitoring Starch Transitions 118
 Microscopy 118
 Viscometric Methods 118
 Differential Scanning Calorimetry 119
Starch Hydrolytic Enzymes 120
 α-Amylase 121
 β-Amylase 122
Modified Starches 122
 Physical Modifications 123
 Chemical Modifications 125
Resistant Starch 127
Concluding Remarks 129
Vocabulary 129
References 131

8 Plant Cell Wall Polysaccharides

Introduction: Why Plant Cell Walls are Important 135
Cellulose 137
Hemicelluloses 139
 Xyloglucans 139
 Heteroxylans 140
 (1→3),(1→4)-β-D-Glucans 140
 Mannans 141
Pectic Polysaccharides 141
Interactions Between Polysaccharides and Cellulose 143
The Plant Cell Wall Structure 144
Vocabulary 145
References 145

9 Nutritional Roles of Carbohydrates

Introduction 147
The Digestive Process: From the Buccal Cavity through the Small Intestine 148
 Absorption of Sugars 149
 Sugar Metabolism 152
The Large Intestine and the Digestive Process 153
 The Colon 153
 Intestinal Microflora 153
Contents

Fate of Nonabsorbed Monosaccharides, Sugar Derivatives, and Oligosaccharides 155
Dietary Fiber 158
Carbohydrate Nutrition and Human Health 159
Vocabulary 162
References 163

Appendices 165
Unit 1. Laboratory/Homework Exercise—Building Molecular Models of Sugar Molecules 167
Unit 2. Homework Exercise—Recognizing Hemiacetal, Hemiketal, Acetal, and Ketal Functional Groups 171
Unit 3. Laboratory/Homework Exercise—Specification of Conformation (C-1 or 1-C), Chiral Family (D or L), and Anomeric Form (α or β) of Sugar Pyranoid Ring Structures 175
Unit 4. Demonstration of the Existence of Plane-Polarized Light and the Ability of Sugar Solutions to Rotate Plane-Polarized Light 181
Unit 5. Laboratory Exercise—Sugar Polarimetry 183
Unit 6. Laboratory Exercise or Lecture Demonstration—The Fehling’s Test for Reducing Sugars 187
Unit 7. Laboratory Exercise—Student-Designed Maillard Browning Experiments 189
Unit 8. Laboratory Exercise or Lecture Demonstration—Microscopic Examination of Starch 193
Unit 9. Names and Structures of Oligosaccharides 197

Index 211
Contributors

Chapter 7
Andrew S. Ross
Department of Crop and Soil Science/Department of Food Science and Technology
Oregon State University
Corvallis, Oregon

Chapter 8
Bronwen G. Smith and Laurence D. Melton
Food Science Programme
The University of Auckland
Auckland, New Zealand
Acknowledgments

A sincere thanks to Andrew Ross, who authored Chapter 7, and to Laurence Melton and Bronwen Smith for Chapter 8. Thanks also to Dan Smith for his insightful reviewing and to Carole Jubert, who came to the rescue of this novice in ChemDraw™ and prepared the chemical structures and figures.
Introduction

Carbohydrates are major components of foods, accounting for more than 90% of the dry matter of fruits and vegetables and providing for 70–80% of human caloric intake worldwide (BeMiller and Huber 2008). Thus, from a quantitative perspective alone, carbohydrates warrant the attention of food chemists. From the standpoint of food quality, carbohydrates are multifunctional. Sugars are the major source, as well as our reference point, for sweetness. Although carbohydrates are described as being odorless, the volatile reaction products from the Maillard reaction, Strecker degradation, and carmelization reactions can provide desirable, undesirable, or neutral flavor compounds. And, although carbohydrates are colorless, sugars participate in Maillard and carmelization reactions to produce desirable and undesirable brown colors. Cellulose, hemicellulose, pectin, and starch are the structural components of plants that are largely responsible for the textural characteristics of fruits and vegetables. Starch and starch derivatives and various hydrocolloids isolated from plants, seaweed, and microbial sources are used as thickeners, gelling agents, bodying agents, and stabilizers in foods. When it comes to nutrition, a sizable portion of the lay public view carbohydrates in a bad light. Carbohydrates are often blamed for health issues such as obesity, diabetes, and dental caries. It should be realized that carbohydrates are, or should be, the principal source of energy in our diet. After all, we evolved as a species to efficiently use carbohydrates that can be converted to glucose for our body’s fuel. Good nutrition is based on the consumption of the appropriate carbohydrates in the right amounts in balance with other nutrients. It is widely accepted that consumption of various forms of complex carbohydrate can reduce the risk of diabetes, coronary heart disease, diverticulitis, and colon cancer. For peak athletic performance, the advice of professional nutritionists will emphasize consumption of the appropriate carbohydrates, in the appropriate amounts, at the appropriate time. Although the percentage of carbohydrates contributing to caloric intake in the United States is highly variable, the average is considerably less than 70%. Dietary recommendations call for increased consumption of fruits and vegetables and a greater proportion of complex carbohydrate (Walker and Reamy 2009; WHO 2010).
Introduction

The major thrust of this book is to apply basic carbohydrate chemistry to the quality attributes and functional properties of foods. Structure and nomenclature of sugars and sugar derivatives is covered but limited to those compounds that exist naturally in foods or are used as food additives and food ingredients. Review and presentation of fundamental carbohydrate chemistry is minimized, with the assumption that readers have taken general organic chemistry and general biochemistry and have ready access to those books for reference. Chemical reactions focus on those that have an impact on food quality and occur under processing and storage conditions. How chemical and physical properties of sugars and polysaccharides affect the functional properties of foods is emphasized. Taste properties and nonenzymic browning reactions are covered. The nutritional roles of carbohydrates are covered from a food chemist’s perspective. One chapter describes selected carbohydrate analytical methods, emphasizing the basic principles of the methods and their advantages and limitations. There is an extensive appendix that includes some laboratory and classroom exercises and lecture demonstrations.

References