STATE OF THE ART OF ACTIVE/INTELLIGENT FOOD PACKAGING

Aaron L. Brody
Packaging/Brody, Inc.
P O Box 956187
Duluth, Georgia 30095 USA

Institute of Food Technologists
Food Packaging Summit
7-9 May 2006
OVERVIEW

- Definitions
- Active packaging
 - Moisture
 - Oxygen
 - Ethylene
 - Microbiological
- Intelligent packaging
 - Temperature
 - Location
 - Microbiological status
CONCLUSIONS

- Developmental
 - Many good laboratory results
 - Relatively little commercial application
 - Cost
 - Accuracy
 - Adverse secondary effects
- Commercialization has been relatively slow
 - Purge, moisture control
 - Oxygen removal
 - Time temperature integrators
 - Location/identification
CONCLUSIONS

- Potential for future
 - Combine moisture control with antimicrobials
 - Inventory monitoring
 - Interaction of package with home and food service appliances
 - Temperature data
 - Reduced oxygen to prolong biochemical shelf life
 - Stimulates enhanced barrier packaging
NEEDS FOR FUTURE

- Improved communication among academic, industry and others involved
- A single independent objective resource to objectively evaluate developing technologies
- Closer targeting of longer term commercial needs
ACTIVE PACKAGING

- Active packaging is sensing followed by the overt manipulation of the environment in the package to better retain food content microbiological or biochemical quality
 - Purge absorbers
 - Microwave susceptors
 - Oxygen scavengers
 - Oxygen additions
 - Moisture absorbers or emitters
 - Odor absorbers or emitters
 - Anti or counter microbials
 - And other controllers of active variables
INTELLIGENT PACKAGING

- An intelligent package senses change and communicates that information to can provide benefits (such as more convenience, better safety, or higher quality) if used.
- Examples
 - Time-temperature, etc. indicators can imply/signal user the quality of the packaged product
 - Biosensor in theory can inform the user of the presence or growth of microorganisms, spoilage and even pathogenicity in the package
 - Bar or PDF code can help to provide better reheating and/or cooking
 - Ripeness
 - Nutritional attributes
 - Gas concentrations in modified atmosphere packages
ACTIVE PACKAGING

- Moisture control
 - Desiccants for dry food
 - Internal
 - Multiphase plastic for both pre and post opening activity
 - Humidity controllers
 - For high moisture foods, e.g. cut fruit, vegetables
 - To retard moisture loss
 - To retard excess moisture in headspace and interstices where microorganisms can grow
- Integrate moisture control with other active packaging functionalities
 - e.g., antimicrobials, pH controllers, oxygen removers
Active Packaging

- Purge absorption
 - To remove liquid squeezed or leaking from fresh products such as meat, poultry and fruit
- Unsightly
- Medium for microbiological growth
- Odor generating
- Leaks into consumer environment: source of major consumer complaints

- Controlled by pulp or polymers
Active Packaging

- Purge absorption
 - Can be enhanced by active additives
 - Antimicrobials
 - pH reducers
 - Carbon dioxide generators
 - The largest commercial application of active packaging although not always classified as active packaging
Purge Absorbers - Pulp
Maxwell-Chase Polymeric Purge Absorbers
CONTROLLED PURGE FRUIT PACKAGE
ACTIVE PACKAGING

- Moisture control
 - Desiccants for dry food
- Internal adjuncts
 - Porous sachets or perforated plastic cartridges
 - Mostly for pharmaceuticals for long term preservation
- Incorporate into plastic package
 - Plastic is partial moisture barrier
 - Multiphase plastic for both pre and post opening activity
 - Largely for multi-use drugs/testing devices
MINIPAX® SORBENT PACKETS

MiniPax® Sorbent silica gel packets are formed of heat sealed Tyvek® spunbonded polyolefin.
Active Packaging

Humidity controllers

☐ For high moisture foods, e.g. cut fruit, vegetables
☐ To control in-package relative humidity
☐ To retard moisture loss
☐ To retard excess moisture in headspace and interstices where microorganisms can grow
☐ Infrequently used
ACTIVE PACKAGING: OXYGEN REMOVERS

- Oxygen scavengers
 - To remove oxygen and retard oxidative reactions
 - As sachets in headspace
 - Jerky
 - Pepperoni
 - Pasta
 - Bakery goods
 - As labels – with less quantity of active component
 - Incorporated into package materials
 - Plastic beer bottles
 - Pasta
 - Retortable pouches and trays
OXYGEN SCAVENGERS

- Mitsubishi Gas Chemical Ageless; Multisorb Technologies, etc., oxygen absorbers
 - Ferrous oxide in Tyvek spun bonded polyolefin sachets
 - Water vapor activated
 - “Rusted” to ferric oxide by reacting with environmental oxygen
 - In excellent oxygen barrier primary packages, removes residual and entering oxygen
 - Used widely in Japan for dry meats, bakery goods, nuts
 - Not overly successful in North America or Europe
- Ascorbic acid, sulfites, photosensitive dyes, unsaturated hydrocarbons and ligands
- Oxbar™ cobalt catalyzed nylon MXD6 imbedded in the plastic structure
Mitsubishi Ageless® Oxygen Absorber

Comparison Effect of AGELESS

Pizza Crust

After 5 days @ 25°C.

AGELESS packet

Control

After 20 days @ 25°C.

AGELESS packet

Control
MULTISORB OXYGEN ABSORBERS

FreshPax™ Packets and Strips are designed to absorb oxygen inside sealed packaging to less than 0.01%

FreshMax™ Label is designed for adhesion with high value foods where oxygen absorption requirements are at levels below 50 cc.
Oxygen Scavenger Label
OXYGEN SCAVENGERS

- Chevron Phillips OSP oxygen scavenging polymer
 - EMCM: Benzoacrylates
 - No resulting odor from oxidation reaction
 - Basis for current Cryovac OS2000
 - Incorporated in film
 - Lidding on Barilla moist pasta, processed meat trays
 - Ultraviolet energy triggered
 - Claimed capable of reducing oxygen to 4-10 ppm
 - Departing the business
Oxygen Scavengers

- Starshield
 - Crown Cork and Seal
 - Constar
- PET bottles
 - Multilayer preforms
 - PET/5 % Oxbar/PET
 - Oxbar=MXD6 nylon + Cobalt catalyst
 - For beer and juice
- Continental PET Technologies
 - MXD6 nylon + Cobalt catalyst
PET BEER BOTTLE WITH OXYGEN SCAVENGERS
Oxygen Scavengers

- Amcor PET
 - Bind-Ox
 - Amguard multilayer preforms
 - PET bottles
 - Beer and juices
Oxygen Scavengers

- BP Chemicals
 - Amosorb ferrous iron
 - Licensed by Color Matrix
 - PET bottles
 - Monolayer or multilayer

- Bericap
 - One piece bottle closure with multilayer oxygen sulfite scavenger
Oxygen Scavengers

- O-Ox
 - Snappy Apple
 - Claims 5X oxygen removal rate
 - Ferrous iron based concentrate
 - For plastic beer bottles
Oxygen Scavengers

- Honeywell
 - Blend scavenger with nanocomposite to enhance barrier
 - Aegis Ox – OXCE
 - Removes oxygen
 - Restricts oxygen AND carbon dioxide
 - Plastic beer bottle
Oxygen Scavengers

- Actituf
 - Monolayer PET
 - Liquid activated+passive barrier
 - Plastic beer bottles
- Unsaturated hydrocarbon butadiene: produces off odors
- Glucose oxidase
 - Nutraceuticals
 - Can simultaneously produce carbon dioxide as an antimicrobial
Oxygen Scavengers

- Huhtamaki
 - Combine scavenger with EVOH
 - Grey color

- Hsaio Sung – Taiwan
 - O-buster ferrous iron
 - For consumer use
 - Sachets
Oxygen Scavengers

- Ciba
 - Shelfplus
 - Ferrous iron based
 - Now combining with EVAL’s EVOH
 - Bebo Plastik
 - For polypropylene and even polyethylene
 - Semi-rigid containers
 - Retort trays
Oxygen Scavengers

- Mitsui – Japan
 - Wonderkeep
 - Integrate with RFID

- Wipak
 - Combitherm
 - Multilayer of scavenger and EVOH
ADD OXYGEN

☐ To retard respiratory anaerobiosis
 - Responsive to temperature
 - Intellipack™ increases/controls package gas permeability to permit entry of air as a function of temperature

☐ To retard respiratory anaerobic pathogenic microbiological growth

☐ To retard respiration in cut lettuce: > 70% oxygen
 - Oxygen generating chemicals in package structure
 - From Atco, France

☐ To “control” oxymyoglobin red color in fresh meat

☐ But does the oxygen reach into pockets and interstices?
CARBON DIOXIDE CONTROL

- Add carbon dioxide from package structure to carbonated beverages to compensate for losses due to insufficient gas barrier
- Add carbon dioxide to increase internal environmental gas to suppress microbiological growth
 - A sub-set of modified atmosphere packaging
 - From plastic package structure
 - From moisture-activated chemicals in sachets, absorbent pads, etc.
- Remove excess carbon dioxide from fast respiring produce using very high gas permeability plastic
 - Asparagus
OTHER ACTIVE PACKAGING CONCEPTS

- Odor scavengers
 - Remove trivial amounts of odor such as from initial lipid or plastic oxidation from package headspace
 - Activated carbon
 - Most effective
 - Best when on interior surface
 - Multiphase plastic
 - Cyclodextrins
 - Molecular sieves
 - Alpha tocopherol (vitamin E)
 - Polyethylene imide aldehyde scavengers
ODOR CONTROL

☐ Aroma additions
 ■ Enhance the product sensory attributes
 ■ May be incorporated into plastic
 ☐ Continuous emission
 ☐ Activated by physical activity
 ■ May be on plastic surface
 ■ May be independent device such as an impregnated straw or closure
 ■ Activate on opening
ETHYLENE ABSORBERS

- Ethylene is respiratory gas from fresh produce – also from engine exhaust fumes
- Excess ethylene accelerates respiration
- Remove ethylene extend shelf life
 - Physical absorption
 - On active surfaces
 - Activated carbon
 - Zeolite
 - Chemical removal with permanganate
 - Effective and commercial – in bulk distribution

Packaging/Brody, Inc.
ACTIVE PACKAGING: ANTI-MICROBIAL

- Antimicrobial or countermicrobial
 - Objective is to reduce the rate of growth of spoilage and/or pathogenic microorganisms in the contained food and thus extend the shelf life
 - Technologies under study
 - Silver ion
 - Allyl isothiocyanate
 - Chlorine dioxide
 - Antibiotics
 - Organic acids
 - Ethyl alcohol
 - Natural spices and essential oils
 - None commercial for food packaging in United States

Packaging/Brody, Inc.
ANTI-MICROBIALS

- Silver salts
 - Direct contact
 - Slow migration
 - React with organics preferentially
 - Broad spectrum effectiveness
 - Surface effects primarily
 - Few, if any, secondary effects
ANTI-MICROBIALS

- Ethyl alcohol
 - Adsorbed on silica or zeolite
 - Emitted by evaporation
 - Somewhat effective
 - Secondary odor
 - Regulatory restrictions
 - Consumer concern
 - Used in past for soft bakery goods
ANTI-MICROBIALS

- Chlorine dioxide
 - Widely publicized
 - Precursor in package structure
 - Reacts with water to produce ClO₂
 - ClO₂ is vapor and can permeate product
 - Broadly effective against microorganisms, but weak
 - Adverse secondary effects
 - Meat color darkening
 - Green vegetable bleaching
 - Principal advocate no longer in business
ANTI-MICROBIALS

- Allyl Isothiocyanate (AIT)
 - Active component in wasabi, horseradish, mustard
 - Broad spectrum anti-microbial, antimycotic
 - Strong secondary odor effects
 - Possible amelioration by vanillin

- Other essential oils
 - Clove, carvacrol, thymol, cinnamon, etc.
 - Diacetyl
AND MORE ACTIVITY FOR THE FUTURE

☐ Heat the contents on demand: self heating
☐ Chill the contents on demand: self chilling
☐ Both of the above have been commercial
 ■ At a cost
 ☐ Money
 ☐ Space
☐ Sense the temperature and control the content temperature
 ■ To compensate for the deficient distribution system (cold chain)
Self Heating Packaging
Self Heating Packaging

- Calcium oxide + water exothermic reaction
 - Magnesium oxide + water exothermic reaction
- For coffee) cans
 - Polypropylene barrier
 - Wolfgang Puck
 - Retorted
 - 6-8 minute heating time after activation
- Military rations
- On the go meals
- Heating device occupies large space volume
Self Heating Coffee Can
Self-Cooling Packaging

- Evaporation of external compound removes heat from contents
 - Freon – not environmentally sound
 - Carbon dioxide – pressurized
 - Water evaporated and adsorbed on surfaces –
 - Functional and commercial for beer kegs
 - Reversible
ACTIVE PACKAGING: MICROWAVE BROWNING

- Packaging devices to achieve surface browning and crusting in rapid heating microwave oven environment
- Limited technical ability
- Limited market success
 - Bakery goods
 - Finger foods
 - Popcorn popping adjunct
Susceptors

Susceptor materials consisting of a metallized coating at optical density of around 0.25.
SHIELDING WITH REFLECTORS

Without Shielding
(Over-exposure of the edges)

With Shielding
(Reflector shields the edges and redirect the power to the center)
MICROWAVEABLE PIZZA WITH SUSCEPTOR, SHIELDING AND FOCUSING
INTELLIGENT PACKAGING

- If you can measure a variable, you can probably control it
- Location Indicators
 - The current classical application for Radio Frequency Indentification (RFID)
 - For distribution inventory control
 - Site
 - Time
 - Quantity
Intelligent Packaging

- Oxygen scavenging with integrated monitoring
- Ethylene scavenging with integrated monitoring
- Microwave ready
- Thermochromic inks
- Barrier plus integrated monitoring
- Self-heating/cooling plus monitoring
INTELLIGENT PACKAGING: TEMPERATURE EXPERIENCE

- Temperature indicators
 - Time temperature integrators
 - Commercial and in use
 - Significance of TTI data re: shelf life, quality, etc.
 - Required for military rations and some pharmaceuticals
 - Cost
- Maximum temperature, i.e., threshold, indicators
 - Commercial and in use
 - Mostly for heating
 - Some for refrigerated, frozen foods, ice cream
CURRENT COMMERCIAL TTI PRODUCTS

- LifeLines Fresh-Check
 - Based on polymerization reaction
- 3M Monitor Mark
 - Based on dye diffusion
- Vitsab® TTI (Cox Technologies)
 - Based on enzymatic lipase color change
Lifelines’ Fresh Check indicators are color-changing, self-adhesive labels which respond to cumulative exposure to temperature. The indicator center irreversibly darkens, faster at higher temperatures. Price ranges from US $0.025 – 0.035 each.
Upon exposure to temperatures above the threshold, the activated indicator's window irreversibly turns blue.
The MonitorMark time temperature indicator contains a porous wick indicator track strip, one end of which is positioned over a reservoir pad containing a blue dyed chemical with a desired melt point.
Vitsab Single Dot Label (TTI)

Central raised portion (pouches)
pre-activation = 0.080"
pree-activation = 0.060"

0.08” label thickness
(including adhesive layer)

Single dot Vitsab’s CheckPoint™ brand labels: (1) distribution temperature monitoring of cartons or pallets of product, and (2) distribution or consumer package unit.
INTELLIGENT PACKAGING

- Food preservation
 - Senses the age, quality level of the food and signals
 - Signals on exterior of food storage area
 - Has been demonstrated in laboratory
 - Usually a secondary measurement
 - Measures time/temperature
 - Signals based on history
 - Publicized as mechanism to incorporate tighter temperature controls into distribution channels
SHELF LIFE SENSING

- Developmental
 - RFID remote sensor
 - Chipless with internal paper battery
 - Smart active label – SAL – with chip
 - Can be added to logistic sensor
 - Sense time temperature
 - Send signal to reader
 - Display time temperature record or integral
Food: Microbiological Growth/Spoilage Indicators

- Rapid microbiological indicators do not exist in real commercial world
- Rapid microbiological spoilage sensors do not exist in commerce
- Rapid microbiological pathogen indicators do not exist in commercial world
- Consumer smell, observations and judgment are today the best signals of food spoilage or hazard.
 - Do instrumental, etc. sensors truly reflect spoilage?
- Alternative is tedious laboratory analysis
BIOSENSORS

- Biomolecular recognition
 - Antigen-antibody
 - Phage capture
 - Spores
 - Bacteria
 - Higher capture rate than antibodies
 - Both highly specific
BIOSENSORS

Sensor platforms
- Acoustic wave
 - Thickness shear quartz resonator
 - Microcantilevers
 - Laser measured
- Flexure plate wave devices
 - Piezoelectric actuated
- Piezoelectric polymer devices
- Microelectric-mechanical-magnetostrictive devices
- All require on-board power and connection to RFID
BIOSENSORS

- Sensor platforms
 - Surface plasmon
 - Magnetostrictive
 - Integrated with antibody/phage layer
 - Oscillation
 - Produces magnetic field signal
Food: Microbiological Growth/Spoilage Indicators

- The former Cox Technologies
 - Respond to amine and sulfide volatiles from spoilage
 - Used to colorimetrically signal seafood microbiological spoilage
 - Commercial
Ripeness Sensors

- ripeSense Label
 - Reportedly senses aromatics emitted from ripening fruit
 - Signals ripeness by label visual cue/color change – for fruit that does not change color during ripening
 - Pears
 - Melons
 - Avocados
UPC (Universal Product Code) Bar Codes

The first digit of the manufacturer is called the number system character: 0 for standard UPC number, 2 for random weight items (fruits, vegetables, meat), 3 for pharmaceuticals, etc.

- **Manufacturer ID (6 digits)**
- **Item Number (5 digits)**
- **Check Digit (1 digit)**

UPC of 12 oz can of Coke

Packaging/Brody, Inc.
PDF 417 Symbol (2-Dimensional)

- PDF417 is a two-dimensional symbol
- It can carry up to 1.1 kilobytes of machine-readable data in a space no larger than a standard bar code.
- A PDF scanner is required to read PDF symbols. Ordinary bar code scanners would not work.
- PDF stands for “Portable Data File”
INVENTORY “CONTROL”

- Determine the presence, absence or impending decrease in quantity of a packaged food in pantry/refrigerator inventory
- Signal consumer that the pantry is empty or near empty
 - Alert consumer to restock
- Signal retail grocer that Mr./Mrs./Ms. X is low on product and to remind her/him by telephone, e-mail or by sending replenishment stock
- Signal distribution center that the stock is low or out
- Indicator on package as empty package is discarded
- Active signaller – or messenger to grocer - on package as empty package is discarded
INTELLIGENT PACKAGING FOR THE HOME/FOOD SERVICE OPERATOR

- Inventory control
 - Tracks inventory of food in home
 - Senses when empty package is discarded
 - Places tentative order with retailer/delivery service
 - Confirm by consumer
- Complemented by interaction with retailer
 - Special requests
 - Change order schedule
INTELLIGENT PACKAGING FOR THE HOME/FOOD SERVICE OPERATOR

- Provides product information
 - Recipe specific to consumer’s “kitchen” equipment
 - Nutritional characteristics
 - Beyond reading the label
 - Integrates individual consumer’s nutritional needs
 - Takes into account the age and time/temperature experience
 - Overtly signals the individual consumer as to dietary value
INTELLIGENT PACKAGING FOR THE RETAILER

- Automatic self-check out
- No direct reading by scanner
- RDID or equivalent
 - Printed on package
 - Read remotely as consumer moves out of retail establishment
 - Totals all items acquired
 - Debits consumer account
 - No movement of product from “shopping cart”
- Automatic shelf price change
INTEGRATE PACKAGING WITH APPLIANCES

- Many attempts to integrate food packaging and food heating appliances
 - Generally few successful marriages
 - Microwave reheating for home meal replacements
 - But not appliance specific
 - Do not accommodate to the wide variety of microwave ovens
 - Other appliances
 - Toaster ovens
 - Refrigerators
 - Coffee brewers
FOOD PREPARATION: MICROWAVE

- Microwave ovens
 - Major differences in ovens
 - Power levels
 - Distribution of energy
 - Age of oven
 - Major differences in energy absorption
 - Microwave heating now judged by operator
 - Automatic control integrates food, package and oven
COOKING/HARDWARE

- Trends
 - Multi-modal heating
 - Single mode too limiting
 - Multi-modal cooking
 - Consumer education
 - Cost higher than conventional
 - Food processor/packager involvement
 - Not all foods can be prepared in multi-modal ovens
 - High speed oven
 - Smart ovens
SMART OVENS

- Because new energy source ovens cook differently, automatic operating controls are required
- Convert from conventional recipes and cooking instructions
- Download recipes from internet since consumers will need directions
HEALTH MONITORING

- Records the food intake by the consumer. Display a summary of food intake, nutritional and other information.
- Connect to an electronic scale for monitoring the weight of the consumer.
- Provide the consumer useful suggestions based on the above information. The information may also be transmitted to the doctor’s office.
THE FUTURE

- Food shelf life will be shorter
- Time in home will be shorter
- Food preservation and preparation will integrate with packaging
 - Packaging will be integrated with processing and distribution
 - Package will be a preparation and serving aid
NEEDS FOR THE FUTURE

- Visible inventory communication for refrigerated and frozen foods
 - Age
 - Time temperature integral
 - Possible quality signal
 - Overt signal to consumer
NEEDS FOR THE FUTURE

- Cooperation among food processors, retailers which offer prepared foods
 - Product packaging to fit home processing
 - Instruction
 - Linkage by computer sensor read and response
 - Long term program
THE FUTURE

- Long term
 - Accurate information
 - Target each household member individually
 - Quality
 - Flavor, mouth feel
 - Nutrient value
 - Other value
 - “Spoilage”
 - Preparation directions based on food, consumer and in-home equipment/interface
- Communication channel/message
THE FUTURE IS PURCHASED BY THE PRESENT

SAMUEL JOHNSON
STATE OF THE ART OF ACTIVE/INTELLIGENT FOOD PACKAGING

Aaron L. Brody
Packaging/Brody, Inc.
P O Box 956187
Duluth, Georgia 30095 USA

Institute of Food Technologists
Food Packaging Summit
7-9 May 2006