International Policy Resources

International Authorities

The following science, policy, regulatory, standards-related, and other resources are offered for your awareness and reference.

The Codex Alimentarius is the international organization created by the United Nations' Food and Agriculture Organization (FAO) and World Health Organization (WHO) to develop food standards, guidelines and other texts under the Joint FAO/WHO Food Standards Programme to protect the health of consumers and ensure fair practices in food trade. As a nongovernmental organization with observer status IFT participates in meetings of select Codex committees and task forces.

With the mandate of raising levels of nutrition, improving agricultural productivity, bettering the lives of rural populations, and contributing to the growth of the world economy, Food and Agriculture Organization (FAO) of the United Nation serves as a knowledge network, shares policy expertise, provides a neutral meeting forum for nations, and brings technical knowledge to the field. 

As the directing and coordinating authority for health within the United Nations, the World Health Organization provides leadership on global health matters, shapes the health research agenda, sets norms and standards, articulates evidence-based policy options, provides technical support to countries, and monitors and assesses health trends.

Joint FAO/WHO Expert Committee on Food Additives (JECFA) is an international expert scientific committee administered jointly by FAO and WHO. JECFA serves as an independent scientific committee which performs risk assessments on food additives, contaminants, naturally occurring toxicants and residues of veterinary drugs in food and provides advice for the CAC and its committees.

The European Food Safety Authority (EFSA) is a scientific risk assessment body of the European Union, providing scientific advice on food and feed safety, nutrition, animal health, plant protection, and plant health.

The Food Chemicals Codex (FFC) is a compendium of internationally recognized standards for the authenticity, purity and identity of food ingredients. The compendium features about 1,100 monographs, including food-grade chemicals, processing aids, foods, flavoring agents, vitamins, and functional food ingredients, as well as information on topics such as adulteration, analytical methods and more.

The FCC plays a key role in safeguarding commerce and public health by providing essential criteria and analytical methods to authenticate and determine the quality of food ingredients. FCC standards are beneficial to all stakeholders in the food industry as agreed standards between suppliers and manufacturers aid in distinguishing genuine products from inferior or adulterated ingredients and substances, thereby helping to make the food supply chain safer and assuring consumers of the quality of the food products they consume. 

The IFT Global Food Traceability Center (GFTC) convenes industry sector stakeholders to facilitate pre-competitive processes which promulgate standards, especially for upstream segments of the food value chain. For more information, visit the GFTC standards and protocols page.
GS1 is a standards body that develops and maintains business communication standards and protocols pertinent to food logistics and traceability. GS1 promulgates standards such as barcodes, communication formats (e.g., EPCIS), and logistics networks (e.g., the Global Data Synchronization Network). GS1 standards have broad usage in the food industry worldwide, especially for consumer-packaged goods, fresh products, meat and poultry, and food service.
The Global Food Safety Initiative (GFSI) was established by the Consumer Goods Forum to benchmark food safety standards worldwide. The GFSI scope encompasses food supply chain safety from production/source to consumption. GFSI seeks to reduce food safety risks through standardization, manage costs in the global food system, develop capacity and competency across global food systems, and provide an international platform for knowledge exchange.

The International Organization for Standardization (ISO) develops and publishes international standards relating to topics, including food ingredients, food safety and quality, and nanotechnology, through a network of national member standards institutes of 162 countries.

The Organisation for Economic Co-operation and Development's (OECD) is an international organization that works to build better policies for better lives. Its goal is to shape policies that foster prosperity, equality, opportunity, and well-being for all. Together with governments, policy makers, and citizens, the OECD works on establishing international norms.

Canadian Food Inspection Agency

The Canadian Food Inspection Agency's (CIFA) highest priority is mitigating risks to food safety, with the health and safety of Canadians the driving force behind the design and development of its programs. In collaboration and partnership with industry, consumers, and federal, provincial, and municipal organizations, CFIA works towards protecting Canadians from preventable health risks related to food and zoonotic diseases.
   

Food Standards Australia New Zealand (FANZ)

The Food Standards Australia New Zealand (FSANZ) is a statutory authority in the Australian Government Health Portfolio. FSANZ develops food standards for Australia and New Zealand.
 

Health Canada

Health Canada is responsible for helping Canadians maintain and improve their health, ensuring that high-quality health services are accessible, and working to reduce health risks.
  

U.K. Foods Standards Agency

The U.K. Food Standards Agency is an independent government department working across England, Wales, and Northern Ireland to protect public health and consumers’ wider interests in food.
 

United States Food and Drug Administration

The U.S. Food and Drug Administration (FDA) The FDA (Food and Drug Administration) ensures the safety, efficacy, and security of human and veterinary drugs, biological products, and medical devices, and ensures the safety of the nation’s food supply, cosmetics, and products that emit radiation. The FDA's role in food regulation involves ensuring the safety and proper labeling of the nation's food supply, excluding meat, poultry, and certain egg products which are regulated by the USDA. It sets standards, conducts inspections, enforces regulations, and responds to foodborne illness outbreaks to protect public health\.
  

United States Department of Agriculture

The U.S. Department of Agriculture provides leadership on food, agriculture, natural resources, rural development, nutrition, and related issues. The USDA develops and enforces regulations related to agricultural practices, food processing, and nutrition, ensuring the overall health and well-being of the public. Through its Food Safety and Inspection Service (FSIS), it oversees the safety, quality, and proper labeling of meat, poultry, and egg products.

Latest from IFT Scientific Journals right arrow

Effect of ozone treatment on phenylpropanoid metabolism in harvested cantaloupes

Phenylpropanoid metabolism plays an important role in cantaloupe ripening and senescence, but the mechanism of ozone regulation on phenylpropanoid metabolism remains unclear. This study investigated how ozone treatment modulates the levels of secondary metabolites associated with phenylpropanoid metabolism, the related enzyme activities, and gene expression in cantaloupe. Treating cantaloupes with 15 mg/m3 of ozone after precooling can help maintain postharvest hardness. This treatment also enhances the production and accumulation of secondary metabolites, such as total phenols, flavonoids, and lignin. These metabolites are essential components of the phenylpropanoid metabolic pathway, activating enzymes like phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4CL, chalcone synthase, and chalcone isomerase. The results of the transcriptional expression patterns showed that differential gene expression related to phenylpropanoid metabolism in the peel of ozone-treated cantaloupes was primarily observed during the middle and late storage stages. In contrast, the pulp exhibited significant differential gene expression mainly during the early storage stage. Furthermore, it was observed that the level of gene expression in the peel was generally higher than that in the pulp. The correlation between the relative amount of gene changes in cantaloupe, activity of selected enzymes, and concentration of secondary metabolites could be accompanied by positive regulation of the phenylpropanoid metabolic pathway. Therefore, ozone stress induction positively enhances the biosynthesis of flavonoids in cantaloupes, leading to an increased accumulation of secondary metabolites. Additionally, it also improves the postharvest storage quality of cantaloupes.

Understanding emulsifier influence on complex coacervation: Essential oils encapsulation perspective

The objective of this research was to explore the viability of pea protein as a substitute for gelatin in the complex coacervation process, with a specific focus on understanding the impact of incorporating an emulsifier into this process. The study involved the preparation of samples with varying polymer mixing ratios (1:1, 1:2, and 2:1) and emulsifier content. As core substances, black pepper and juniper essential oils were utilized, dissolved beforehand in grape seed oil or soybean oil, to minimize the loss of volatile compounds. In total, 24 distinct samples were created, subjected to freeze-drying to produce powder, and then assessed for their physicochemical properties.

Discovering the volatilome fingerprint of selected traditional Cuban wines elaborated with native grapes, tropical fruits, and rice using DHS–TD–GC–MS

Cuban wine is a traditional alcoholic beverage elaborated with a wide variety of raw materials, such as native grapes, tropical fruits, and rice, and different winemaking processes. Research on Cuban wines is almost nonexistent, and therefore, a study of these wines is necessary to improve their quality. Dynamic headspace (DHS)-TD-gas chromatography–mass spectrometry (GC–MS) analysis was carried out to establish the different aroma fingerprints of different Cuban wines. A total of 42 volatile aroma metabolites (VAMs) were identified, including esters, alcohols, aldehydes, acids, volatile phenols, terpenes, and lactones. The odorant activity values (OAV) of each VAM were obtained, and the esters were the most relevant group due to their highest OAV. Ethyl octanoate, hexanoate, and butanoate stand out and are considered key odorants in the aromatic fingerprint. The VAMs were grouped into seven aromatic series. Fruity series showed the highest OAVs due to the contribution of ethyl esters and acetates. Principal component analysis was used to identify the specific parameters most accurately reflecting the differences between the wines. Showing that fruity, spicy, and chemical aromatic series allow distinguishing the wines into three aroma types. These results may provide useful information for the selection of raw materials and optimization of the traditional winemaking processes of Cuban wines.

Impact of functional dietary fiber incorporation on the appearance and mechanical properties of extruded high moisture meat analogs

The effect of including functional dietary fiber ingredients (FDFI) on the texture and structure of high moisture meat analog (HMMA) was examined in this study. The inclusion of FDFI in this application is hypothesized to act as a label-friendly texture modifier in HMMA while also boosting the product's dietary fiber content. Two inclusion rates (5% and 10% wt/wt) of four functionally unique FDFI ingredients (pea hull, citrus fiber, hydrocolloid oat bran, and powdered cellulose) were blended with wheat protein isolate. Each unique formulation was processed using a high-moisture twin-screw extrusion process at two different screw speeds (200 and 400 rpm). The type of FDFI added affected the mechanical texture attributes (hardness, springiness, cohesiveness, and integrity index) and in-process behavior (torque and pressure) of the resulting HMMA far more than the inclusion rate or screw speed (p > 0.05). The type of FDFI ingredient employed also had the largest qualitative effect on the visual appearance of the resulting HMMA. These observed quality changes correlated well with the physicochemical and structure–function properties of the FDFI ingredients, especially with water-holding and absorption capacities. The incorporation of FDFI is a viable means of modulating HMMA texture and improving the holistic nutrition of these products.

Evaluation of fish meal freshness using a metal‐oxide semiconductor electronic nose combined with the long short‐term memory feature extraction method

To improve the classification and regression performance of the total volatile basic nitrogen (TVB-N) and acid value (AV) of different freshness fish meal samples detected by a metal-oxide semiconductor electronic nose (MOS e-nose), 402 original features, 62 manually extracted features, manually extracted and selected features by the RFRFE method, and the features extracted by the long short-term memory (LSTM) network were used as inputs to identify the freshness. The classification performance of the freshness grades and the estimation performance of the TVB-N and AV values of fish meal with different freshness were compared. According to the sensor response curve, preprocessing and feature extraction steps were first applied to the original data. Then, five classification algorithms and four regression algorithms were used for modeling. The results showed that a total of 30 features were extracted using the LSTM network, and the number of extracted features was significantly reduced. In the classification, the highest accuracy rate of 95.4% was obtained using the support vector machine method. In the regression, the least squares support vector regression method obtained the best root mean square error (RMSE). The coefficient of determination (R 2), RMSE, and relative standard deviation (RSD) between the predicted value of TVBN and the actual value were 0.963, 11.01, and 7.9%, respectively. The R 2, RMSE, and RSD between the predicted value of AV and the actual value were 0.972, 0.170, and 6.05%, respectively. The LSTM feature extraction method provided a new method and reference for feature extraction using an E-nose to identify other animal-derived material samples.

Latest News

Effect of ozone treatment on phenylpropanoid metabolism in harvested cantaloupes

Phenylpropanoid metabolism plays an important role in cantaloupe ripening and senescence, but the mechanism of ozone regulation on phenylpropanoid metabolism remains unclear. This study investigated how ozone treatment modulates the levels of secondary metabolites associated with phenylpropanoid metabolism, the related enzyme activities, and gene expression in cantaloupe. Treating cantaloupes with 15 mg/m3 of ozone after precooling can help maintain postharvest hardness. This treatment also enhances the production and accumulation of secondary metabolites, such as total phenols, flavonoids, and lignin. These metabolites are essential components of the phenylpropanoid metabolic pathway, activating enzymes like phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4CL, chalcone synthase, and chalcone isomerase. The results of the transcriptional expression patterns showed that differential gene expression related to phenylpropanoid metabolism in the peel of ozone-treated cantaloupes was primarily observed during the middle and late storage stages. In contrast, the pulp exhibited significant differential gene expression mainly during the early storage stage. Furthermore, it was observed that the level of gene expression in the peel was generally higher than that in the pulp. The correlation between the relative amount of gene changes in cantaloupe, activity of selected enzymes, and concentration of secondary metabolites could be accompanied by positive regulation of the phenylpropanoid metabolic pathway. Therefore, ozone stress induction positively enhances the biosynthesis of flavonoids in cantaloupes, leading to an increased accumulation of secondary metabolites. Additionally, it also improves the postharvest storage quality of cantaloupes.

Understanding emulsifier influence on complex coacervation: Essential oils encapsulation perspective

The objective of this research was to explore the viability of pea protein as a substitute for gelatin in the complex coacervation process, with a specific focus on understanding the impact of incorporating an emulsifier into this process. The study involved the preparation of samples with varying polymer mixing ratios (1:1, 1:2, and 2:1) and emulsifier content. As core substances, black pepper and juniper essential oils were utilized, dissolved beforehand in grape seed oil or soybean oil, to minimize the loss of volatile compounds. In total, 24 distinct samples were created, subjected to freeze-drying to produce powder, and then assessed for their physicochemical properties.

Discovering the volatilome fingerprint of selected traditional Cuban wines elaborated with native grapes, tropical fruits, and rice using DHS–TD–GC–MS

Cuban wine is a traditional alcoholic beverage elaborated with a wide variety of raw materials, such as native grapes, tropical fruits, and rice, and different winemaking processes. Research on Cuban wines is almost nonexistent, and therefore, a study of these wines is necessary to improve their quality. Dynamic headspace (DHS)-TD-gas chromatography–mass spectrometry (GC–MS) analysis was carried out to establish the different aroma fingerprints of different Cuban wines. A total of 42 volatile aroma metabolites (VAMs) were identified, including esters, alcohols, aldehydes, acids, volatile phenols, terpenes, and lactones. The odorant activity values (OAV) of each VAM were obtained, and the esters were the most relevant group due to their highest OAV. Ethyl octanoate, hexanoate, and butanoate stand out and are considered key odorants in the aromatic fingerprint. The VAMs were grouped into seven aromatic series. Fruity series showed the highest OAVs due to the contribution of ethyl esters and acetates. Principal component analysis was used to identify the specific parameters most accurately reflecting the differences between the wines. Showing that fruity, spicy, and chemical aromatic series allow distinguishing the wines into three aroma types. These results may provide useful information for the selection of raw materials and optimization of the traditional winemaking processes of Cuban wines.

Impact of functional dietary fiber incorporation on the appearance and mechanical properties of extruded high moisture meat analogs

The effect of including functional dietary fiber ingredients (FDFI) on the texture and structure of high moisture meat analog (HMMA) was examined in this study. The inclusion of FDFI in this application is hypothesized to act as a label-friendly texture modifier in HMMA while also boosting the product's dietary fiber content. Two inclusion rates (5% and 10% wt/wt) of four functionally unique FDFI ingredients (pea hull, citrus fiber, hydrocolloid oat bran, and powdered cellulose) were blended with wheat protein isolate. Each unique formulation was processed using a high-moisture twin-screw extrusion process at two different screw speeds (200 and 400 rpm). The type of FDFI added affected the mechanical texture attributes (hardness, springiness, cohesiveness, and integrity index) and in-process behavior (torque and pressure) of the resulting HMMA far more than the inclusion rate or screw speed (p > 0.05). The type of FDFI ingredient employed also had the largest qualitative effect on the visual appearance of the resulting HMMA. These observed quality changes correlated well with the physicochemical and structure–function properties of the FDFI ingredients, especially with water-holding and absorption capacities. The incorporation of FDFI is a viable means of modulating HMMA texture and improving the holistic nutrition of these products.

Evaluation of fish meal freshness using a metal‐oxide semiconductor electronic nose combined with the long short‐term memory feature extraction method

To improve the classification and regression performance of the total volatile basic nitrogen (TVB-N) and acid value (AV) of different freshness fish meal samples detected by a metal-oxide semiconductor electronic nose (MOS e-nose), 402 original features, 62 manually extracted features, manually extracted and selected features by the RFRFE method, and the features extracted by the long short-term memory (LSTM) network were used as inputs to identify the freshness. The classification performance of the freshness grades and the estimation performance of the TVB-N and AV values of fish meal with different freshness were compared. According to the sensor response curve, preprocessing and feature extraction steps were first applied to the original data. Then, five classification algorithms and four regression algorithms were used for modeling. The results showed that a total of 30 features were extracted using the LSTM network, and the number of extracted features was significantly reduced. In the classification, the highest accuracy rate of 95.4% was obtained using the support vector machine method. In the regression, the least squares support vector regression method obtained the best root mean square error (RMSE). The coefficient of determination (R 2), RMSE, and relative standard deviation (RSD) between the predicted value of TVBN and the actual value were 0.963, 11.01, and 7.9%, respectively. The R 2, RMSE, and RSD between the predicted value of AV and the actual value were 0.972, 0.170, and 6.05%, respectively. The LSTM feature extraction method provided a new method and reference for feature extraction using an E-nose to identify other animal-derived material samples.

Subscribe to The Weekly Newsletter

Get the latest developments in food industry, policy and regulation, research, and more sent to your in-box every Wednesday.

Subscribe